「数源科技未来前景如何」数源科技手机壳前景

体育正文 158 0

数源科技未来前景如何

数源科技手机壳前景

数源科技股份有限公司怎么样?

数源科技股份有限公司是1999-03-31在浙江省注册成立的其他股份有限公司(上市),注册地址位于浙江省杭州市西湖区教工路1号。 数源科技股份有限公司的统一社会信用代码/注册号是913300007125597931,企业法人章国经,目前企业处于开业状态。 数源科技股份有限公司的经营范围是:数字(模拟)彩色电视机、数字视音频产品、数字电子计算机及外部设备、多媒体设备、充换电设备、卫星广播设备、电话通信设备、移动通信系统及设备、电子元器件的制造、加工、销售、修理;电器整机的塑壳、模具、塑料制品的制造、加工;电子计算机软件的技术开发、技术咨询、技术服务、成果转让;机电设备、房屋、汽车租赁
简介:数源科技股份有限公司由西湖电子集团有限公司投资控股,于1999年成立的高科技上市公司(股票代码000909)。数源科技总股本19600万股,西湖电子集团原持有国有法人股13600万股,占总股本69.39%;社会公众股6000万股,占总股本的30.61%。2005年12月,数源科技完成股权分置改革,成为浙江省首家实施股权分置改革的国有控股上市公司。股改后西湖电子集团持股11380万股,占总股本的58.06%。目前,公司拥有资产总额13.95亿元,净资产5.45亿元。 法定代表人:章国经成立时间:1999-03-31注册资本:31235.2464万人民币工商注册号:330000000044723企业类型:其他股份有限公司(上市) 公司地址:浙江省杭州市西湖区教工路1号
数源科技股份有限公司怎么样?

数据科学与大数据技术专业怎么样?前景如何?谢谢!

数据科学与大数据技术专业很不错,前景比较乐观,毕业生能在政府机构企业公司等从事大数据管理研究应用开发等方面的工作。同时可以考取软件工程计算机科学与技术应用统计学等专业的研究生或出国深造。大数据专业和计算机专业比较像,是注重实践的专业。学生需要独立编写程序,对程序进行修改与调试,需要注意每一个细节才能顺利查错并运行程序。该专业对于学生的数学能力有很高的要求,所以对于数学不敏感的学生,建议慎重报考,而且该专业对于学生的计算机使用能力有很高的要求,学生在校学习期间,一定要学好这方面的知识,,可以选择考取计算机的相关资格证书,提升自身竞争力。扩展资料数据科学分为三大类,即:数据分析、数据挖掘和大数据。数据分析主要偏重业务,即利用一些数据分析和统计工具,如Excel、Spass、SAS、SQL等,进行数据分析和展现,以辅助公司的某项业务决策。数据挖掘比数据分析更侧重于建模能力一些,一般是给定一些数据和某个问题,让你运用某些机器学习算法从中建立出模型,再通过这个模型去对某些东西进行预测。所以,机器学习算法可以说是数据挖掘中的核心。与大数据关系比较密切的岗位包括大数据平台开发、大数据应用开发、大数据分析、大数据呈现和大数据教育等,不同的岗位需要具备不同的知识结构,所面对的工作场景也有较大的区别。大数据平台开发属于研发级岗位,需要从业者具有较强的研发能力。
数据科学与大数据技术专业很不错,前景比较乐观,毕业生能在政府机构企业公司等从事大数据管理研究应用开发等方面的工作。同时可以考取软件工程计算机科学与技术应用统计学等专业的研究生或出国深造。下面我们就来具体说一下这个行业的发展前景和毕业之后的就业情况。大数据专业和计算机专业比较像,是注重实践的专业。学生需要独立编写程序,对程序进行修改与调试,需要注意每一个细节才能顺利查错并运行程序。该专业对于学生的数学能力有很高的要求,所以对于数学不敏感的学生,建议慎重报考,而且该专业对于学生的计算机使用能力有很高的要求,学生在校学习期间,一定要学好这方面的知识,,可以选择考取计算机的相关资格证书,提升自身竞争力。数据科学分为三大类,即:数据分析、数据挖掘和大数据。数据分析主要偏重业务,即利用一些数据分析和统计工具,如Excel、Spass、SAS、SQL等,进行数据分析和展现,以辅助公司的某项业务决策。数据挖掘比数据分析更侧重于建模能力一些,一般是给定一些数据和某个问题,让你运用某些机器学习算法从中建立出模型,再通过这个模型去对某些东西进行预测。所以,机器学习算法可以说是数据挖掘中的核心。与大数据关系比较密切的岗位包括大数据平台开发、大数据应用开发、大数据分析、大数据呈现和大数据教育等,不同的岗位需要具备不同的知识结构,所面对的工作场景也有较大的区别。大数据平台开发属于研发级岗位,需要从业者具有较强的研发能力。
专业还是不错,但这个专业对数学与物理的功底要求不是一般的高。物理必须非常好,数学是计算,物理是思维与想象的严密。如果高中数学、物理不好,还是谨慎报考。否则进去后,听不懂,作业做不了,最后挂课很多,毕业证都没了。因此,高中数学不好,物理不好的,一定要小心报考。 另外,从对数学和物理的要求这么高看,相对而言,高等级的学校(如985、211或双一流)开设的会得心应手,而一些低端的学校,可能差一些;尤其是民办(独立)学院,可能师资都成问题;但这些低端的学校,在宣传上可能比高端学校做得好,罗列一大堆证书和获奖,可能是都是化钱买的。报考学校时,要多比较,看看有没有硕士点、博士点。如果都没有的,那相对差很多,毕竟这是一个高智商的专业。如果没有硕士点,博士点,再看看师资中正式教师的学历(不是外聘老师),博士多不多?如果这也很少,那么这个学校很可能就是一个跟风招生的,浑水摸鱼的,甚至一些学校连老师的简历都不敢贴出来,则更水了。 总之,追热门专业一定要慎重选择学校,否则大学4年可能浪费了。
大数据专业前景怎么样,细心看看近期的政策心里就有数了。 今年3月份,教育部公布了第二批获准开设“数据科学与大数据技术”的高校名单,加上去年获批的北京大学、对外经济贸易大学、中南大学,一共35所高校获批该专业。今年开始,部分院校将招收第一届大数据专业本科生,开设数据科学与大数据技术本科专业 大都是重点大学。今年2月份,教育部发布《教育部高等教育司关于开展“新工科”研究与实践的通知》,随后“新工科”的讨论在高校里逐渐升温,培养“新工科”人才成为新的指导方向。其中新工科专业就包括数据科学与大数据技术、网络空间安全、物联网工程、飞行器制造工程等专业,国家重视对整个社会转型和经济升级需要的人才培养。考大数据研究生的话,北航在13年开了大数据技术与应用软件工程硕士的专业,是国内很早就开设大数据相关专业的高校。清华大学的数据科学研究院于2014年招收大数据专业的学生,复旦大学于2015年9月开设数据科学专业,贵州大学、华南理工、武汉大学、对外经贸大学这些学校与慧科集团合作共建了硕士层次的大数据技术应用专业,这些学校的大数据专业开设时间长比较成熟,这些高校可以考虑。“大数据”专业毕业以后干什么?事实上,大数据工作者可以施展拳脚的领域非常广泛,从国防部、互联网创业公司到金融机构,到处需要大数据项目来做创新驱动。数据分析或数据处理的岗位报酬也非常丰厚,在硅谷,入门级的数据科学家的收入已经是6位数了(美元)。目前全国各类高校、高职院校已陆续开始围绕大数据专业建设展开研究并申报大数据专业。作为交叉型学科,大数据的相关课程涉及数学、统计和计算机等学科知识,“数据科学与大数据技术”专业也强调培养具有多学科交叉能力的大数据人才。该专业重点培养具有以下三方面素质的人才:一是理论性的,主要是对数据科学中模型的理解和运用;二是实践性的,主要是处理实际数据的能力;三是应用性的,主要是利用大数据的方法解决具体行业应用问题的能力。大数据人才缺口达150万各大高校紧锣密鼓启动大数据人才培养,缘于大数据时代催生的大量相关人才缺口。 全球最顶尖管理咨询公司麦肯锡(McKinsey)出具的一份详细分析报告显示,预计到2018年,大数据或者数据工作者的岗位需求将激增,其中大数据科学家的缺口在140000到190000之间,对于懂得如何利用大数据做决策的分析师和经理的岗位缺口则将达到1500000!
数据科学与大数据技术专业怎么样?前景如何?谢谢!

数源科技的待遇怎么样

这个工资是没有定的 最重要的是要看你的能力杭州的广告行业的工资并不高能力好的提成拿的多还可以单单工资不拿提成能有五千的工资算是主管、总监的级别好多主管、总监也没这个工资之于以实习生的身份谈工资具我所知其它地方我不清楚杭州实习生工资是比较低的有的不给工资就给什么公交车、中餐、还有住房补贴的这个还算不错的,有的就是白干没工资没什么补贴的有工资一般在300-1000之间的实习生就是学徒很多广告公司的实习生就是打杂的特别在大一点广告公司闲的时候让你电脑用用忙的时候就是倒茶提水跑腿的份所以说在找工作的时候最好不要说你是实习生就算去实习最好不要去大公司实习 因为一开始学在大公司还不如小公司里学的多
数源科技的待遇怎么样

大数据未来的发展前景怎么样呢?

从我国数据产量和存量来看,广东、北京、浙江、江苏、上海、等地区数据资源较为丰富,东部地区数据产量和存量均高于西部地区。从省际数据流量来看,东部地区月均互联网省际出口总流量占全国比重超过一半。在以北上广为代表的东部地区数据资源丰富的背景下,其大数据产业发展水平快于其他地区省份。其中,北上广大数据企业数量占全国比重近70%,广东和北京大数据发展水平较高。东部地区数据产量整体高于西部,省际数据流量远高于其他地区2019年,我国数据产量总规模为3.9ZB。从数据产量的地区分布看,2019年全国数据产量排名前十位的省份为广东、北京、浙江、江苏、上海、山东、四川、河南、河北和湖南。从人均数据产量来看,2019年人均数据产量排名前十位的省份分别是北京、上海、浙江、天津、广东、内蒙古、西藏、海南、江苏和辽宁。整体来看,东部地区数据产量和人均数据产量均高于西部地区。2019年,我国月均互联网省际出口流量各省份均值为3EB。其中,排名前十位的省份是江苏、山东、广东、浙江、河北、河南、上海、湖北、湖南和福建。东部地区月均互联网省际出口总流量为49.9EB,占全国的53.7%,远超其他地区。东部地区数据存量大,西部、西北地区数据存量较少截至2019年底,我国数据总存量约为332EB。从数据存储的区域分布看,截至2019年底,全国数据存量排名前十位的省份为广东、北京、江苏、山东、浙江、四川、河南、上海、河北和湖北。从数据存储密度看,截至2019年底我国总体数据密度为0.035PB/平方公里,排名前十位的省份是上海、北京、天津、广东、江苏、浙江、山东、河南、重庆和河北。总体来看,我国数据存量区域分布情况与产量一致,主要集中于东部和中部地区部分省份,西部、西北地区数据存量较少。北上广大数据企业数量领先,各省市大数据发展水平差异较为显著根据中国信通院统计,我国大数据企业主要分布在北京、广东、上海、浙江等经济发达、数据资源丰富的省份。其中,北京大数据产业实力雄厚,大数据企业数量约占全国总数的35%。依托京津冀大数据综合试验区,天津、石家庄、廊坊、张家口、秦皇岛等地大数据产业蓬勃发展,在信息产业领域形成了竞争优势。此外,广东、上海、浙江等地区数据产量及存量较大,大数据企业分布较多。根据《中国大数据区域发展水平评估白皮书(2020年)》评估结果显示,排名首位的为广东省遥遥领先,指数为56.43,高出排名末位的西藏自治区47.05。从指数分布来看,全国各省、市、自治区大致可以分为三个梯队:第一梯队由广东、北京、江苏、山东、浙江、上海、福建、四川8个省、市组成,这些省市的总指数均高于30;第二梯队由湖北、安徽、河南等11个省、市组成;第三梯队由广西、黑龙江等12个省、自治区组成,总指数均小于20,这些地区大数据发展相对滞后,需积极借鉴领先省市的发展经验,加快追赶步伐。—— 更多数据来请参考前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》
大数据对于企业的发展起着至关重要的作用,许多企业业务靠着大数据分析市场需求,制定营销策略,优化生产流程、供应链与物流管理、能源管理、提供智能客户服务等。目前,大数据相关的行业不少,备受关注的也有很多,也都出现在大家的生活中,便利着人们的生活。智能家居、线上医疗、智慧零售等等。未来5年大数据市场将由重基础设施向重应用落地转移,随着数据量的增长,数据治理和模型算法将持续受到关注。政府、金融和电信将保持持续增长的态势,而医疗和新零售将成为下一个大数据技术投入的新领域。一、智慧医疗未来,通过大数据,能够推出预测疾病服务,并且能精准到80%。通过分析全球的基因数据或者病历数据,以及对比各种行为习惯,将各自的健康数据、生命体征指标都集合在数据库和健康档案中结合,通过大数据分析应用能够精准预防一些重大疾病,做到提前治疗和防范。二、智慧零售未来,大数据能够帮助零售行业精准定位客户。一个企业成功与否,最重要的就是精准客户群体或者说资源。如果一家企业想要进人或者去进行某一个零售行业区域的市场开拓,最先要做的就是进行项目评估和可行性分析,消费者群体,消费行为习惯,这些都能够通过数据呈现。未来,能够通过大数据挖掘零售行业新需求。作为零售行业企业,如果能对网上零售行业的评论数据进行收集,建立网评大数据库,然后再利用分词、聚类、情感分析了解消费者的消费行为、价值取向、评论中体现的新消费需求和企业产品质量问题,以此来改进和创新产品,量化产品价值,制定合理的价格及提高服务质量,从中获取更大的收益。
随着信息技术和人类生产生活交汇融合,全球数据呈现爆发增长、海量集聚的特点。无论是国家、企业还是社会公众,都越来越认识到数据的价值。因此,近年来,各地纷纷成立大数据发展局,企业纷纷推动数据资产治理,大数据辐射的行业也从传统的电信、金融逐渐扩展到工业、医疗、教育等。一时间,仿佛各行各业都在谈大数据,人人都在谈大数据。但也有声音说大数据迎来了“七年之痒”,面对大数据热潮也需要一些“冷思考”。我国大数据究竟发展得如何?未来我国大数据发展还有哪些机遇和挑战? 1、大数据产业进展显著过去几年,大数据理念已经深入人心,“用数据说话”已经成为所有人的共识,数据也成了堪比石油、黄金、钻石的战略资源。五年来,我国大数据产业政策日渐完善,技术、应用和产业都取得了非常明显的进展。在政策方面,我国从中央到地方的大数据政策体系已经基本完善,目前已经进入落地实施阶段。自从2014年“大数据”这个词写入政府工作报告以来,我国大数据发展的政策环境掀开了全新的篇章。在顶层设计上,国务院《促进大数据发展行动纲要》对政务数据共享开放、产业发展和安全三方面做了总体部署。《政务信息资源共享管理暂行办法》《大数据产业发展规划(2016-2020)》等文件也都已经出台。十九大报告中提出“推动大数据与实体经济深度融合”,“十三五”规划中提出“实施国家大数据战略”。卫健、农业、环保、检察、税务等部门还出台了领域大数据发展的具体政策。截至2019年初,所有省级行政区都发布了大数据相关的发展规划,十几个省市设立了大数据管理局,8个国家大数据综合试验区、11个国家工程实验室启动建设。可以说,大数据的政策体系已经基本搭建完成,目前已经纷纷进入落地实施甚至评估检查阶段。在技术方面,我国大数据技术发展属于“全球第一梯队”,但国产核心技术能力严重不足。我国独有的大体量应用场景和多类型实践模式,促进了大数据领域技术创新速度和能力水平,处于国际领先地位。在技术全面性上,我国平台类、管理类、应用类技术均具有大面积落地案例和研究;在应用规模方面,我国已经完成大数据领域的最大集群公开能力测试,达到了万台节点;在效率能力方面,我国大数据产品在国际大数据技术能力竞争平台上也取得了前几名的好成绩;在知识产权方面,2018年我国大数据领域专利公开量约占全球的40%,位居世界第二。但我国大数据技术大部分为基于国外开源产品的二次改造,核心技术能力亟待加强。例如,目前国内主流大数据平台技术中,自研比例不超过10%。在产业方面,我国大数据产业多年来保持平稳快速增长,但面临提质增效的关键转型。2018年,我国大数据产业延续多年来的增速,继续保持相对高速的增长。根据中国信息通信研究院的测算,2018年我国大数据产业整体规模有望达到5400亿元,同比增长15%。然而,综合国内外环境、新兴技术发展等多种因素,大数据产业的增速出现了下滑。我国的大数据产业也面临着从高速发展向高质量发展的关键转型期。在应用方面,大数据的行业应用更加广泛,正加速渗透到经济社会的方方面面。随着大数据工具的门槛降低以及企业数据意识的不断提升,越来越多的行业开始尝到大数据带来的“甜头”。无论是从新增企业数量、融资规模还是应用热度来说,与大数据结合紧密的行业正在从传统的电信业、金融业扩展到政务、健康医疗、工业、交通物流、能源行业、教育文化等,行业应用“脱虚向实”趋势明显,与实体经济的融合更加深入。2、产业的五大困局虽然我国大数据总体发展形势良好,也面临难得的发展机遇,但仍然存在一些困难和问题。一是,涉及核心技术的产业发展薄弱,未能有效提升我国核心技术竞争力。核心技术的影响力在大数据产业有着极高的重要性。由于大数据企业在完成产品开发后,可以近乎零成本无限制的复制,因此拥有核心技术的大企业,很容易将技术优势转化为市场优势,即凭借具体的信息产品赢得海量用户获得垄断地位。当前,从大数据技术与产品的供给侧看,我国虽然在局部技术实现了单点突破,但大数据领域系统性、平台级核心技术创新仍不多见。大数据处理工具都是“他山之石”,大部分企业用的都是国外的数据采集、数据处理、数据分析、数据可视化技术,自主核心技术突破还有待时日。尤其是开源产品的技术标准方面,我国的影响力尚亟待提升。二是,数据孤岛和壁垒降低了大数据产业资源配置效率。大数据产业发展必须实现数据信息的自由流动和共享,如果数据不开放、不共享,数据整合就不能实现,数据价值也会大大降低。无论是政府数据、互联网数据还是其他数据,数据拥有者往往不愿对其进行开放流通。受制于前期信息基础设施建设,目前我国政府数据往往还存在着诸多“数据孤岛”和“数据烟囱”,数据价值难以发挥。三是,数据安全管理薄弱增加了大数据产业的发展风险。大数据技术为经济社会发展带来创新活力的同时,也使数据安全、个人信息保护乃至大数据平台安全等面临新威胁与新风险。海量多源数据在大数据平台汇聚,来自多个用户的数据可能存储在同一个数据池中,并分别被不同用户使用,极易引发数据泄露风险。利用大数据技术对海量数据(21.90 -5.19%,诊股)进行挖掘分析所得结果可能包含涉及国家经济社会等各方面的敏感信息,需要对分析结果的共享和披露加强安全管理。四是,产业垄断与恶性竞争现象频发,“劣币驱逐良币”现象明显。由于资源型产业门槛低、利润高,新兴的大数据企业往往首先将目光盯在获取数据资源上面。大量依托数据资源优势的企业诞生,为大数据产业带来了低附加值的垄断经济模式,使得依靠技术壁垒打江山的企业不得不面对残酷的市场竞争,放缓了技术研发的步伐。同时,数据垄断问题也愈发明显。少数互联网巨头企业拥有巨大数据,不但对产业发展不利,甚至存在巨大的数据聚集隐患。 五是,各地发展同质化严重,普遍存在重存储轻应用的现象。由于缺乏统一的大数据产业分类统计体系和产业运行监测手段,各地大数据产业的定位相似,同质化竞争加剧。而盲目的重复建设,更是可能导致大数据产业过剩。同时,由于部分地区信息化发展程度有限,大数据应用场景不够丰富,更是以数据中心等大数据存储设施的建设作为发展大数据产业的关键,且规模巨大,目标动辄以百万台计,后期若无法有效利用,将造成巨大的资源浪费。
大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 [1] 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 [1]中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
大数据未来的发展前景怎么样呢?

大数据未来的前景怎么样?

发展历程:十年来大数据产业高速增长,我国信息智能化程度得到显著提升我国大数据产业布局相对较早,2011年,工信部就把信息处理技术作为四项关键技术创新工程之一,为大数据产业发展奠定了一定的政策基础。自2014年起,“大数据”首次被写进我国政府工作报告,大数据产业上升至国家战略层面,此后,国家大数据综合试验区逐渐建立起来,相关政策与标准体系不断被完善,到2020年,我国大数据解决方案已经发展成熟,信息社会智能化程度得到显著提升。市场规模:2020年市场规模超6000亿 维持高速增长中国大数据产业联盟发布的《2021中国大数据产业发展地图暨中国大数据产业发展白皮书》指出,2018年以来,大数据技术的快速发展,以及大数据与人工智能、VR、5G、区块链、边缘智能等新技术的交汇融合,持续加速技术创新。与此同时,伴随新型智慧城市和数字城市建设热潮,各地与大数据相关的园区加速落地,大数据产业持续增长。赛迪顾问的数据显示,2020年中国大数据产业规模达6388亿元,同比增长18.6%,预计未来三年保持15%以上的年均增速,到2023年产业规模超过10000亿元。市场格局——细分市场格局:软硬件占据行业主要市场目前,我国的大数据产业尚处于初级建设阶段,从市场结构来分,大数据产业可划分为大数据硬件、软件以及服务三类市场。根据《IDC全球大数据支出指南》,2020年中国大数据市场最大的构成部分仍然来自于传统硬件部分——服务器和存储,占比超过40%,其次为IT服务和商业服务,两者共占33.6%的比例,剩余由25.4%的大数据软件所构成。从软件角度来看,2020年中国最大的三个细分子市场依次为终端用户查询汇报分析工具(End-User Query, Reporting, and Analysis Tools)、人工智能软件平台(AI Software Platforms)以及关系型数据仓库(Relational Data Warehouses),并且IDC预计,三者总和占中国整体大数据软件市场的比例接近50%。——应用市场格局:互联网、政府、金融为大数据主要应用领域从具体行业应用来看,互联网、政府、金融和电信引领大数据融合产业发展,合计规模占比为77.6%。互联网、金融和电信三个行业由于信息化水平高,研发力量雄厚,在业务数字化转型方面处于领先地位;政府大数据成为近年来政府信息化建设的关键环节,与政府数据整合与开放共享、民生服务、社会治理、市场监管相关的应用需求持续火热。此外,工业大数据和健康医疗大数据作为新兴领域,数据量大、产业链延展性高,未来市场增长潜力大。发展趋势与前景——发展趋势:数据治理成为大数据发展的重要方向——发展前景预测据赛迪顾问预测,2023年中国大数据产业市场规模将超过10000亿元,2021-2023年增速将达到15%以上。在此基础上,前瞻测算,到2027年我国大数据产业市场规模将接近18000亿元。—— 更多行业相关数据请参考前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》
大数据行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等本文核心数据:大数据应用领域分布 互联网大数据、金融大数据、政府大数据市场规模 应用场景等应用领域分布:互联网、政府、金融为大数据主要应用领域从具体行业应用来看,互联网、政府、金融和电信引领大数据融合产业发展,合计规模占比为77.6%。互联网、金融和电信三个行业由于信息化水平高,研发力量雄厚,在业务数字化转型方面处于领先地位;政府大数据成为近年来政府信息化建设的关键环节,与政府数据整合与开放共享、民生服务、社会治理、市场监管相关的应用需求持续火热。此外,工业大数据和健康医疗大数据作为新兴领域,数据量大、产业链延展性高,未来市场增长潜力大。互联网大数据领域——互联网大数据应用场景在互联网行业,除了社交、B2C业务之外,像在线音视频业务、广告监测、精准营销等等,也是未来潜在应用场景。——大数据在互联网领域的应用占比过半,2021年市场规模有望突破3000亿面对当今快速增长的海量互联网数据和复杂的网络社群关系,如何从中提取有价值信息,建立用户模型,针对不同用户提供针对性产品,以此来提高用户体验,增加用户粘性,是当前互联网行业面对的主要挑战之一。社交网站、电商网站将是最需要大数据技术的两类网站,用户间关联性和消费行为是其关注的主要方面。根据赛迪数据,我国大数据产业在互联网领域的应用占比约为45.2%。据测算,2017年,中国互联网大数据产业规模达1604.7亿元,2020年约为2887.4亿元。注:上述互联网大数据市场规模为前瞻根据中国大数据市场规模与互联网大数据所占市场份额数据测算所得,仅供参考。政府大数据领域——政府大数据应用场景中国政府大数据主要应用于信息共享、政务数据管理、城市网络管理与社会管理几大领域。加强电子政务建设,管理好政府的数据资产,完善政府决策流程,将是未来数年大数据在公共管理领域发展的重要方向。大数据将对政府部门的精细化管理和科学决策发挥重要作用,从而提高政府的服务水平。舆情监测、交通安防、医疗服务等将是公共管理领域重点应用领域。——2020年政府大数据市场规模超900亿元根据赛迪数据,我国大数据产业在政府领域的应用占比约为14.5%。据此测算,2017年以来,我国政府大数据规模逐年增加。2017年,中国政府大数据产业规模达514.8亿元,2020年约为926亿元左右。注:政府大数据市场规模为前瞻根据中国大数据市场规模与政府大数据所占市场份额数据测算所得,仅供参考。金融大数据领域——金融大数据应用场景过去几年,金融大数据带来了重大的技术创新,为行业提供了便捷、个性化和安全的解决方案。目前,中国金融大数据典型的应用场景包括股票洞察、欺诈检测和预防、风险分析与金融服务领域。——大数据在金融领域的应用空间巨大,2020年市场规模已超600亿金融数据是大数据商业应用最早的数据源,早在1996年摩根大通银行就聘请数学家丹尼尔利用递归决策树统计方法,对抵押贷款用户进行统计分析,帮助银行找到可能提前还款或者未来不会还款的客户。经过一年的运行,基于递归决策树的抵押贷款管理为摩根大通银行创造了近6亿美元利润。根据赛迪数据,我国大数据产业在金融领域的应用占比约为9.4%。据测算,2017年,中国金融大数据产业规模达333.7亿元,2020年约为600亿元。注:金融大数据市场规模为前瞻根据中国大数据市场规模与金融大数据所占市场份额数据测算所得,仅供参考。
大数据技术目前正处在落地应用的初期,从大数据自身发展和行业发展的趋势来看,大数据未来的前景还是不错的,具体原因有以下几点: 第一:大数据自身能够创造出更多的价值。大数据相关技术紧紧围绕数据价值化展开,数据价值化将开辟出广大的市场空间,重点在于数据本身将为整个信息化社会赋能。随着大数据的落地应用,大数据的价值将逐渐得到体现。目前在互联网领域,大数据技术已经得到了较为广泛的应用。第二:大数据推动科技领域的发展。大数据的发展正在推动科技领域的发展进程,大数据的影响不仅仅体现在互联网领域,也体现在金融、教育、医疗等诸多领域。在人工智能研发领域,大数据也起到了重要的作用,尤其在机器学习、计算机视觉和自然语言处理等方面,大数据正在成为智能化社会的基础。第三:大数据产业链逐渐形成。经过近些年的发展,大数据已经初步形成了一个较为完整的产业链,包括数据采集、整理、传输、存储、分析、呈现和应用,众多企业开始参与到大数据产业链中,并形成了一定的产业规模,相信随着大数据的不断发展,相关产业规模会进一步扩大。 第四:产业互联网将推动大数据落地。当前互联网正在经历从消费互联网向产业互联网过渡,产业互联网将利用大数据、物联网、人工智能等技术来赋能广大的传统产业,可以说产业互联网的发展空间非常大,而大数据则是产业互联网发展的一个重点,大数据能否落地到传统行业,关乎产业互联网的发展进程,所以在产业互联网阶段,大数据将逐渐落地,也必然落地。
大数据行业的前景可期: 它覆盖全行业,应用领域非常广泛,无论是政府政务,还是各行各业,都在探索应用大数据,未来大数据将成为全行业基石。而且作为新兴行业,不仅人才缺口大,薪资也普遍偏高的,由于业内大牛还很稀缺,从业者不多,想入行要趁早,机遇机会也会更多些。大数据覆盖各行各业,应用领域广泛:云存储:中国比较好的有百度云,国外比较好的有AWS等。正是因为有这些产品的出现,数据在云端的概念才终于变成现实了,大家都不用踹着U盘到处跑了。内容推荐:最具代表性的有今日头条,它正是运用了大数据技术来找到你喜欢的内容并且推荐给你。自从这个产品出现以后已经有很多人抛弃以前的新闻阅读方式。它让网易新闻、新浪新闻、腾讯新闻等产品上了不少火。现在大家都开始纷纷的学习它。物品推荐:电影网站、音乐网站、电商网站这些网站都会把根据你的浏览行为进行分析,根据你的兴趣推荐给你相应的物品,比如爱奇艺、QQ音乐、京东等。广告计算:应用比较好的有百度、谷歌、淘宝、腾讯,他们要根据广告主的价格和广告的效果计算广告的排序,好在流量中达到最好的变现效果,这时数据的处理速度与数据的量级直接影响了他们的收入。金融:银行正使用大数据分析用户的消费行为、购买能力以及还款能力,用来降低提供给用户的贷款风险,减少环帐率。信用:支付宝的芝麻信用加入了更多的维度,比如你的人际关系、学历、车等等元素来评估你的信用值,给信用值高的人提供更好的服务,比如信用度高住酒店就不用交押金。数据分析:这个具有代表性的产品不多,但确是大数据应用非常主要的场景,一般都是公司内部定制性的,所以一般不公开,但确实各种公司都在用,比如网站的流量分析、相关产品的用户特性分析、微博的语义分析。可以根据这些分析为自己的业务或者产品发展方向提供决策依据。智慧城市:这个现在比较有代表性的功能就是可以根据人流控制路灯的亮度,可以达到省电的效果。通过车流控制红绿灯的变化,减少道路拥堵。随着信息技术和人类生产生活交汇融合,全球数据呈现爆发增长、海量集聚的特点。无论是国家、企业还是社会公众,都越来越认识到数据的价值。因此,近年来,各地纷纷成立大数据发展局,企业纷纷推动数据资产治理,大数据辐射的行业也从传统的电信、金融逐渐扩展到工业、医疗、教育等。一时间,仿佛各行各业都在谈大数据,人人都在谈大数据。但也有声音说大数据迎来了“七年之痒”,面对大数据热潮也需要一些“冷思考”。我国大数据究竟发展得如何?未来我国大数据发展还有哪些机遇和挑战?本公司目前在招聘一些大数据分析师,我们欢迎所有对数据分析感兴趣的人来试试,符合条件的可以投递简历(可培养!!!)投递方式见下方,更多岗位信息关注本公司公众号,欢迎主动与我们联系。(1、签订正式合同、五险一金;2、须大专及以上学历;3、无经验者由项目经理带;4、每日简历投递量非常大,欢迎主动与我们联系!!!)联科数据—长期招聘岗位​mp.weixin.qq.com/s?__biz=Mzg5ODEwMDMwNg==∣=2247486632&idx=1&sn=0ea7c945302f1c6bb1ada0f598c5d60f&chksm=c066f195f71178833365b0ecd5fd4df7e58c8bdc00c2174dc43df0fa1c809bfd2f7a3aeea762&token=105714734⟨=zh_CN#rd未来三年,是我国大数据发展转型的重要机遇期。大数据的发展本身也呈现着一些趋势。在我看来,未来三年大数据行业有可能会呈现出如下特点:一是,大数据新技术继续快速发展。未来大数据技术将会沿着工具平台云化部署、多业务场景统一处理、专有高性能硬件适配几个方面进行突破。目前大数据技术工具的主要应用模式为应用企业在自建机房内独立部署,其存在资源浪费、弹性能力不足、管理复杂等缺点,这些缺陷可以通过基于云计算技术的云化部署方案解决,助力大数据技术工具的快速落地和应用;同时大数据技术工具主要瞄准的是分析型业务场景,但随着电子商务以及智能终端的爆发性发展,转账、计费等事务型业务场景也需要大数据处理能力,所以未来的多业务场景统一处理技术将会得到充分发展;最后由于GPU/TPU等专用硬件的发展,此类专用硬件能够助力某些大数据技术进行突破性升级,所以对新型硬件的适配成为很多大数据企业未来研发计划的重点。二是,数据流通共享将迎来关键突破。这些年,推动数据开放共享的政策举措一直在加强,然而效果与预期还有差距。可以说,技术手段将是数据流通共享瓶颈突破的关键。未来三年,随着同态加密、差分隐私、零知识证明、量子账本等关键技术的性能提升和门槛降低,随着区块链、安全多方计算等工具与数据流通场景进一步紧密结合,数据共享和流通将有望再前进一大步。三是,数据服务合规性将成为行业关注重点。近两年来,随着欧盟《通用数据保护条例》(GDPR)的颁布和正式实施,个人信息保护的重视程度被提到了前所未有的高度。GDPR对数据主体的权利规定细致入微,其“数据可携权”“被遗忘权”等方面的规定可能会对我国数据立法带来一定的参考。对我国企业来说,数据服务合规性的重要程度进一步提升,将对企业业务开展带来重大影响。目前中国信息通信研究院正在着力推动的“可信数据服务”计划也正是契合了行业的这一需求。 四是,数据资产管理重要性将进一步提升。
伴随着大数据的发展,如今很多的人们都都投入了大数据开发的洪流中,不过相对也有着不少的朋友还对大数据的发展还比较迷茫,大数据发展趋势是什么?开源解决方案有许多可用的公共数据解决方案(例如开源软件),已经在加速数据处理方面取得了相当大的进步。它们现在也具有允许实时访问和响应数据的功能,因此它们将在未来蓬勃发展,并受到高度需求。边缘计算在物联网迅速发展的趋势影响下,许多公司开始转向连接设备,以收集更多关于客户或流程的数据。这就产生了对技术创新的需求,旨在减少从数据的收集、分析到采取行动的滞后时间。边缘计算提供了更好的性能,因为流入和流出网络的数据更少,云计算成本更低,即使公司要删除从物联网收集到的不必要的数据,公司也可以从存储成本和基础设施成本中受益。此外,边缘计算还可以加快数据分析,让公司有充足的时间做出反应。更智能的聊天机器人在人工智能技术的推动下,聊天机器人现在被用来处理客户查询以提供更个性化的交互,同时不再需要实际的人工人员。机器人在处理大量数据时,能够根据客户在查询中输入的关键字来提供相关答案。而在互动过程中,他们还能够从对话中收集和分析客户的信息,这个过程可以帮助企业开发更精简的策略,提供更愉快的客户体验。更智能、更严格的网络安全由于过去那些被曝出的涉及黑客攻击和系统入侵的丑闻,各机构开始将重点放在加强信息保密上。物联网也引起了人们对所收集数据的关注,其中网络安全是个大问题。为了应对这一迫在眉睫的威胁,大数据公司开始利用数据分析工具来预测和检测网络安全威胁。大数据可以通过将安全日志数据集成到网络安全策略中,提供有关过去威胁的信息,帮助公司防止和减轻未来黑客攻击以及数据泄露的影响。以上就是为您介绍的关于大数据发展趋势解析。
大数据未来的前景怎么样?

欢迎 发表评论:

评论列表

暂时没有评论

暂无评论,快抢沙发吧~